Bounce and Learn: Modeling Scene Dynamics with Real-World Bounces

Abstract

We introduce an approach to model surface properties governing bounces in everyday scenes. Our model learns end-to-end, starting from sensor inputs, to predict post-bounce trajectories and infer two underlying physical properties that govern bouncing - restitution and effective collision normals.

Our model, Bounce and Learn, comprises two modules – a Physics Inference Module (PIM) and a Visual Inference Module (VIM). VIM learns to infer physical parameters for locations in a scene given a single still image, while PIM learns to model physical interactions for the prediction task given physical parameters and observed pre-collision 3D trajectories.

To demonstrate our results, we introduce the Bounce Dataset comprising 5K RGB-D videos of bouncing trajectories of a foam ball to probe surfaces of varying shapes and materials in everyday scenes including homes and offices.

Publication
International Conference on Learning Representations (ICLR) 2019